140 research outputs found

    earthquake damage mapping by using remotely sensed data the haiti case study

    Get PDF
    This work proposes methodologies aimed at evaluating the sensitivity of optical and synthetic aperture radar (SAR) change features obtained from satellite images with respect to the damage grade due to an earthquake. The test case is the Mw 7.0 earthquake that hit Haiti on January 12, 2010, located 25 km west–south–west of the city of Port-au-Prince. The disastrous shock caused the collapse of a huge number of buildings and widespread damage. The objective is to investigate possible parameters that can affect the robustness and sensitivity of the proposed methods derived from the literature. It is worth noting how the proposed analysis concerns the estimation of derived features at object scale. For this purpose, a segmentation of the study area into several regions has been done by considering a set of polygons, over the city of Port-au-Prince, extracted from the open source open street map geo-database. The analysis of change detection indicators is based on ground truth information collected during a postearthquake survey and is available from a Joint Research Centre database. The resulting damage map is expressed in terms of collapse ratio, thus indicating the areas with a greater number of collapsed buildings. The available satellite dataset is composed of optical and SAR images, collected before and after the seismic event. In particular, we used two GeoEye-1 optical images (one preseismic and one postseismic) and three TerraSAR-X SAR images (two preseismic and one postseismic). Previous studies allowed us to identify some features having a good sensitivity with damage at the object scale. Regarding the optical data, we selected the normalized difference index and two quantities coming from the information theory, namely the Kullback–Libler divergence (KLD) and the mutual information (MI). In addition, for the SAR data, we picked out the intensity correlation difference and the KLD parameter. In order to analyze the capability of these parameters to correctly detect damaged areas, two different classifiers were used: the Naive Bayes and the support vector machine classifiers. The classification results demonstrate that the simultaneous use of several change features from Earth observations can improve the damage estimation at object scale

    Ground deformation and source geometry of the 30 October 2016 Mw 6.5 Norcia earthquake (Central Italy) investigated through seismological data, DInSAR measurements, and numerical modelling

    Get PDF
    We investigate the Mw 6.5 Norcia (Central Italy) earthquake by exploiting seismological data, DInSAR measurements, and a numerical modelling approach. In particular, we first retrieve the vertical component (uplift and subsidence) of the displacements affecting the hangingwall and the footwall blocks of the seismogenic faults identified, at depth, through the hypocenters distribution analysis. To do this, we combine the DInSAR measurements obtained from coseismic SAR data pairs collected by the ALOS-2 sensor from ascending and descending orbits. The achieved vertical deformation map displays three main deformation patterns: (i) a major subsidence that reaches the maximum value of about 98 cm near the epicentral zones nearby the town of Norcia; (ii) two smaller uplift lobes that affect both the hangingwall (reaching maximum values of about 14 cm) and the footwall blocks (reaching maximum values of about 10 cm). Starting from this evidence, we compute the rock volumes affected by uplift and subsidence phenomena, highlighting that those involved by the retrieved subsidence are characterized by significantly higher deformation values than those affected by uplift (about 14 times). In order to provide a possible interpretation of this volumetric asymmetry, we extend our analysis by applying a 2D numerical modelling approach based on the finite element method, implemented in a structural-mechanic framework, and exploiting the available geological and seismological data, and the ground deformation measurements retrieved from the multi-orbit ALOS-2 DInSAR analysis. In this case, we consider two different scenarios: the first one based on a single SW-dipping fault, the latter on a main SW-dipping fault and an antithetic zone. In this context, the model characterized by the occurrence of an antithetic zone presents the retrieved best fit coseismic surface deformation pattern. This result allows us to interpret the subsidence and uplift phenomena caused by the Mw 6.5 Norcia earthquake as the result of the gravitational sliding of the hangingwall along the main fault plane and the frictional force acting in the opposite direction, consistently with the double couple fault plane mechanism

    The Interferometric Use of Radar Sensors for the Urban Monitoring of Structural Vibrations and Surface Displacements

    Get PDF
    In this paper, we propose a combined use of real aperture radar (RAR) and synthetic aperture radar (SAR) sensors, within an interferometric processing chain, to provide a new methodology for monitoring urban environment and historical buildings at different temporal and spatial scales. In particular, ground-based RAR measurements are performed to estimate the vibration displacements and the natural oscillation frequencies of structures, with the aim of supporting the understanding of the building dynamic response. These measurements are then juxtaposed with ground-based and space-borne SAR data to monitor surface deformation phenomena, and hence, point out potential risks within an urban environment. In this framework, differential interferometric SAR algorithms are implemented to generate short-term (monthly) surface displacement and long-term (annual) mean surface displacement velocity maps at local (hundreds m2) and regional (tens km2) scale, respectively. The proposed methodology, developed among the activities carried out within the national project Programma Operativo Nazionale MASSIMO (Monitoraggio in Area Sismica di SIstemi MOnumentali), is tested and discussed for the ancient structure of Saint Augustine compound, located in the historical center of Cosenza (Italy) and representing a typical example of the Italian Cultural Heritage

    The Mw 7.9Wenchuan (China) Earthquake: exploring the role of crustal heterogeneities from finite element analysis of DInSAR coseismic deformation

    Get PDF
    A destructive (Mw 7.9) earthquake struck the Sichuan province (China) on May 12, 2008. The seismic event, the largest in China in more than three decades and referred as the Wenchuan earthquake, ruptured approximately 280 km of the Yingxiu-Beichuan fault and about 70 km of the Guanxian-Anxian fault. Surface effects were suffered over a wide epicentral area (about 300 km E-W and 250 km N-S). The huge earthquake took place within the context of long term uplift of the Longmen Shan range in eastern Tibet. The Longmen Shan fault zone is the main tectonic boundary between the Sichuan basin and eastern Tibet and is characterized by a large topographic relief (from 500m a.s.l. to more than 4000m) and large variations in rheological properties. The coseismic deformation is imaged by a set of ALOS-PALSAR L-band SAR interferograms. We use an unprecedented high number of data (25 frames from 6 adjacent tracks) to encompass the entire coseismic area. The resulting mosaic of differential interferograms covers an overall area of about 340 km E-W and 240 km N-S. The complex geophysical context of Longmen Shan and the variations of the fault geometry along its length can be better handled by means of numerical methods. The fault geometry is constrained by inversions of geodetic data and by taking into account the geological features of eastern Tibet and Sichuan basin. As a result, we build a Finite Element (FE) model consisting of two non planar faults embedded in a non-homogeneous medium with real topography of the area. We develop a procedure to perform inversions of DInSAR data based on FE computed Green functions of the surface displacement field. We retrieve a complex slip distribution on the fault segments in a heterogeneous medium with realistic surface topography

    Numerical analysis of interseismic, coseismic and postseismic phases for normal and reverse faulting earthquakes in Italy

    Get PDF
    The preparation, initiation, and occurrence dynamics of earthquakes in Italy are governed by several frequently unknown physical mechanisms and parameters. Understanding these mechanisms is crucial for developing new techniques and approaches for earthquake monitoring and hazard assessments. Here, we develop a first-order numerical model simulating quasi-static crustal interseismic loading, coseismic brittle episodic dislocations, and postseismic relaxation for extensional and compressional earthquakes in Italy based on a common framework of lithostatic and tectonic forces. Our model includes an upper crust, where the fault is locked, and a deep crust, where the fault experiences steady shear. The results indicate that during the interseismic phase, the contrasting behavior between the upper locked fault segment and lower creeping fault segment generates a stretched volume at depth in the hanging wall via extensional tectonics while a contracted volume forms via compressional tectonics. The interseismic stress and strain gradients invert at the coseismic stage, with the interseismic dilated volume contracting during the coseismic stage, and vice versa. Moreover, interseismic stress gradients promote coseismic gravitational subsidence of the hanging wall for normal fault earthquakes and elastic uplift for reverse fault earthquakes. Finally, the postseismic relaxation is characterized by further ground subsidence and uplift for normal and reverse faulting earthquakes, respectively, which is consistent with the faulting style. The fault is the passive feature, with slipping generating the seismic waves, whereas the energy activating the movement is stored mostly in the hanging wall volume. The main source of energy for normal faulting and thrust is provided by the lithostatic load and elastic load, respectively

    Did the September 2010 (Darfield) earthquake trigger the February 2011 (Christchurch) event?

    Get PDF
    We have investigated the possible cause-and-effect relationship due to stress transfer between two earthquakes that occurred near Christchurch, New Zealand, in September 2010 and in February 2011. The Mw 7.1 Darfield (Canterbury) event took place along a previously unrecognized fault. The Mw 6.3 Christchurch earthquake, generated by a thrust fault, occurred approximately five months later, 6 km south-east of Christchurch's city center. We have first measured the surface displacement field to retrieve the geometries of the two seismic sources and the slip distribution. In order to assess whether the first earthquake increased the likelihood of occurrence of a second earthquake, we compute the Coulomb Failure Function (CFF). We find that the maximum CFF increase over the second fault plane is reached exactly around the hypocenter of the second earthquake. In this respect, we may conclude that the Darfield earthquake contributed to promote the rupture of the Christchurch fault

    A Multidisciplinary Study of the DPRK Nuclear Tests

    Get PDF
    The Democratic People Republic of Korea announced two underground nuclear tests carried out in their territory respectively on October 9th, 2006 and May 25th, 2009. The scarce information on the precise location and the size of those explosions has stimulated various kinds of studies, mostly based on seismological observations, by several national agencies concerned with the Nuclear Test Ban Treaty verification. We analysed the available seismological data collected through a global high-quality network for the two tests. After picking up the arrival times at the various stations, a standard location program has been applied to the observed data. If we use all the available data for each single event, due to the different magnitude and different number of available stations, the locations appear quite different. On the contrary, if we use only the common stations, they happen to be only few km apart from each other and within their respective error ellipses. A more accurate relative location has been carried out by the application of algorithms such as double difference joint hypocenter determination (DDJHD) and waveform alignment. The epicentral distance between the two events obtained by these methods is 2 km, with the 2006 event shifted to the ESE with respect to that of 2009. We then used a dataset of VHR TerraSAR-X satellite images to detect possible surface effects of the underground tests. This is the first ever case where these highly performing SAR data have been used to such aim. We applied InSAR processing technique to fully exploit the capabilities of SAR data to measure very short displacements over large areas. Two interferograms have been computed, one co-event and one post-event, to remove possible residual topographic signals. A clear displacement pattern has been highlighted over a mountainous area within the investigated region, measuring a maximum displacement of about 45 mm overall the relief. Hypothesizing that the 2009 nuclear test had been carried out close to the area where the displacement has been observed through the DInSAR technique, its relation with the epicenter location obtained through seismological processing has been discussed as a possible alternative hypothesis with respect to the preferred solutions reported by the nuclear explosion database (NEDB). The distance of about 10 km between the two places can be considered acceptable in light of the possible systematic location shifts commonly observed in the seismological practice over a global scale. The difference between the m b magnitudes of the two tests could reflect differences in geological conditions of the two test sites, even if the yield of the two explosions had been the same

    Step-like displacements of a deep seated gravitational slope deformation observed during the 2016–2017 seismic events in Central Italy

    Get PDF
    Deep Seated Gravitational Slope Deformations are characterized by low deformation rates although they can experience partial-collapse phases or more rapid movements, especially in presence of active tectonic structures. In the Central Italy, considering the high seismicity rate, seismic activity must be considered to be an important trigger of deep slope movements. We aim to contribute to the research in this field by reporting the results of a monitoring program on a Deep Seated Gravitational Slope Deformation in this region that involves marly calcareous rocks. We documented the pre-earthquakes evolution of the phenomenon and measured its displacements during the seismic sequence in 2016 and 2017 in Central Italy, which largest events were Mw 5.0-to-6.5. A multidisciplinary approach that combines a field geomorphological survey, installation of permanent GPS stations, and InSAR elaborations was adopted for this study. The average ground motion rate of the slope deformation before the earthquakes was very low (< 3 mm/y) and not spatially homogenous, as detected by GPS and InSAR. In detail, the uppermost area of the slope instability likely moves faster than the lowest sector. On the other hand, GPS and InSAR recorded significant step-like movements, one to ten times higher than the normal activity rate, triggered by the M-w 5.0-to-6.5 earthquakes. In detail, the movement mainly depended on the magnitude of the earthquake and the distance from the epicenter, and only secondarily on the number of larger magnitude earthquakes on a given day. In conclusion, we furnished monitoring data on the activity rate of a Deep Seated Gravitational Slope Deformation in seismic context, we indicated two sectors of the investigated deformation that resulted more unstable and we proved that the combination of InSAR and GPS data is a useful monitoring system for earthquake activated, slow-moving slope instabilities.Published337-3482T. Deformazione crostale attivaJCR Journa

    Cosesimic liquefaction phenomena from DInSAR after the May 20, 2012 Emilia earthquake

    Get PDF
    In this paper, we have investigated the capability of Differential Interferometry Synthetic Aperture Radar (DInSAR) technique to detect the ground effects induced by liquefaction phenomena occurred during the May 20, 2012 Emilia earthquake. To this aim, a set of COSMO-SkyMed (CSK) SAR images covering the coseismic phase has been used. The detected surface effects have been related to liquefaction of deep sandy layers. Thanks to the geological/geotechnical data in the area and a liquefaction susceptibility analysis of the subsoil, it has been identified a sandy layer between 9 and 13 m in deep, which probably liquefied during the earthquake. The estimated vertical displacements due to liquefaction are comparable with the values measured by DInSAR.Published5-95T. Sismologia, geofisica e geologia per l'ingegneria sismicaN/A or not JC

    InSAR Monitoring of Italian Coastline Revealing Natural and Anthropogenic Ground Deformation Phenomena and Future Perspectives

    Get PDF
    In this work, we use X and C-band SAR data provided by the COSMO-SkyMed and ENVISAT missions to detect and measure some ground deformation phenomena along six coastal areas of Italy. In particular, we exploit multi-temporal interferometric synthetic aperture radar (InSAR), i.e., small baseline subsets (SBAS) and interferometric point target analysis (IPTA) methods, to retrieve the deformation rate maps and time series for each investigated area. Multi-temporal InSAR analysis revealed local subsidence and uplifting effects in Ravenna Coastal Areas, Fiumicino, Campi Flegrei, Sibari Plain, Augusta Bay, and Taranto Gulf. Our work is meant as a demonstrator to show how InSAR-based analysis can provide a detailed understanding of the coastal hazards. Such analysis also opens up new monitoring scenarios such as the possibility of designing a near real-time surveillance service based on Sentinel-1 SAR data.Publishedid 31522T. Deformazione crostale attivaJCR Journa
    • …
    corecore